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A METHOD FOR THE ANALYSIS OF NONLINEARITIES IN AIRCRAFT
DYNAMIC RESPONSE TO ATMOSPHERIC TURBULENCE

Kenneth Sidwell®
Langley Research Center

SUMMARY

An analytical method is developed which combines the equiva-
lent linearization technique for the analysis of the response of
nonlinear dynamic systems with the amplitude modulated random pro-
cess (Press model) for atmospheric turbulence. The method is
initially applied to a bilinear spring system. The analysis of
the response shows good agreement with exact results obtained by
the Fokker-Planck equation. The method is then applied to an
example of control-surface displacement limiting in an aircraft
with a pitch-hold autopilot.

INTRODUCTION

Nonlinear effects can be important in aircraft dynamic
response to atmospheric turbulence, particularly at design load
levels. The importance of nonlinear effects is widely recog-
nized, especially those influencing the action of stability aug-
mentation and active control systems of aircraft in atmospheric
turbulence. Structural design criteria based upon random process
theory (the power spectral density method) require that the non-
linear effects of control system action upon loads at the limit
load level be realistically or conservatively accounted for. (See
refs. 1 and 2.) Current analysis procedures generally use analog
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simulation to study effects of nonlinearities upon the control
system action. Several examples of the analysis of stability
augmentation systems using analog simulation are the analyses for
the B-52 (ref. 3), the B-70 (ref. 4), and the Lockheed 1011

(refs. 5 and 6). The study of reference 3, for example, shows that
the displacement limiting of the control surface in severe turbu-
lence has the effect of making the control system inoperative.

This general effect is also shown by experimental data discussed in
reference 7. Thus, nonlinear effects can be especially important
in the use of control systems to alleviate turbulence-induced

loads in aircraft. _

A method for the analysis of nonlinear effects in aircraft
dynamic response to atmospheric turbulence is developed in the
present study. The method combines two basic analytical concepts:
(1) the analysis of the response of nonlinear dynamic systems to
random proceéses, and (2) the development of the amplitude modu-
lated random process for modeling atmospheric turbulence. Exact
solutions for the response of some nonlinear dynamic systems have
been obtained by use of the Fokker-Planck equation (refs. 8 and
9). Approximate solutions have been obtained by the technique of
equivalent linearization. The development and reviews of this
method and its applications are given in references 10 to 12. The
amplitude modulated random process, which is used to model atmo-
spheric turbulence, was developed by Press and his associates
(refs. 13 and 14). The mathematical properties of the amplitude
modulated random process have been examined in references 15 and
16. The original contribution of the present study is the com-
bination of these two separate subjects and the application of 4
the resulting analytical method to one example of control limiting &
effects in aircraft dynamic response to atmospheric turbulence.

The present study is divided into two parts. The first part
is the development of the response of a spring-mass-damper system
with a bilinear stiffness force. The response of this nonlinear
system to a Gaussian conditional process is developed by use of
the Fokker-Planck equation. The response to the amplitude modu-

2




lated process is then developed by combining the response to the
conditional process with the random variation of the amplitude
parameter of the conditional process. The exact solution and
two approximate solutions are developed. Since the bilinear
spring system allows an exact solution, the adequacy of the
approximate solutions for this type of nonlinear dynamic system
can be evaluated. The second part of the study is an applica-
tion of the equivalent linearization technique to one problem

of nonlinear aircraft response to atmospheric turbulence. An
example of control surface deflection limiting in an aircraft

with an autopilot operating in a pitch-hold mode is considered.

SYMBOLS

A standard deviation factor of conditional process

b standard deviation of amplitude (o) process

bi turbulence intensity parameter

CO normalization constant of probability density
function

CM5 aerodynamic moment coefficient for elevator deflection

E[ ] ensemble average

E[ o] ensemble average of conditional process (conditional
on value ¢)

erf( ) error function (ref. 17)

erfec( ) complementary error function, 1 ~ erf( )

f(x) stiffness force



g(y,n)

h( )

p( )

p(xlo)

= v eXP[(Y2 - 1)n2]erfc(yn)

nonlinear limiting function

control effectiveness factor associated with nonlinear
elevator deflection

feedback gain for subscripted quantity

modified Bessel function of order zero (ref. 17)
linear stiffness force coefficient

aerodynamic moment due to elevator deflection
mass

exceedance expression or expected frequency of positive
slope crossings of indicated 1level

expected frequency of positive slope crossings of zero
level

turbulence probability parameter
probability density function

conditional probability density function of X process

conditional on value o

dynamic pressure

reference area times reference chord length

R e

o et b2

[



ch

Laplace transformation variable; also amplitude parameter

in appendix A
time
servo system characteristic time
time derivative of x
displacement of bilinear spring system
breakpoint of bilinear stiffness force relation

limiting mean value of displacement of nonsymmetric
bilinear spring system

_ 2
= (1 - Y )Xb
parameter of nonsymmetric bilinear stiffness force

relation: modulus of ratio of negative and positive
displacement breakpoints

ratio of vertical component of turbulence velocity
to aircraft forward speed

linear damping force coefficient

K 1

k2

Dirac delta function

commanded elevator deflection perturbation

physical elevator deflection perturbation



$ physical limit of elevator deflection

pl
n = xb/VEAX1c
) pitch angle perturbation
g (t) Gaussian white noise process
o amplitude random process; amplitude paraméter of condi- -

tional process; standard deviation of subscripted pro-

cess, for example, °y means standard deviation of y
Subscripts:
am amplitude moduiated process
b breakpoint
c conditional
dr Dempster-Roger method
e equivalent linearization
i,j,k,n integer index
p physical ‘
1,2 regions of stiffness force relations i

A tilde over a symbol denotes a variable of integration. :
Dots over a symbol denote derivatives with respect to time.



RESPONSE OF SYMMETRIC BILINEAR SPRING SYSTEM

The response of a specific nonlinear dynamic system to random
excitation by the amplitude modulated process is analyzed in this
section. The nonlinear system is one for which the exact solution
of the system response to a stationary Gaussian process is known.
The present development combines the analysis of the response of
nonlinear dynamic systems by the Fokker-Planck equation with the
development of the amplitude modulated random process. The ampli-
tude modulated process, which is the combination of a local random
process with a random amplitude modulation, is discussed in appen-
dix A. The application of the Fokker-Planck equation to nonlinear
dynamic systems is also discussed in appendix A. The solution for
the response of the nonlinear dynamic system to the amplitude mod-
ulated process is developed in two steps. First, the solution is
developed for excitation by the conditional process, which is a
Gaussian process with a given value of amplitude parameter. The
effects upon the response of varying the amplitude parameter of
the excitation process are considered in detail. Second, the
solution is developed for excitation by the amplitude modulated
process, by using the results for the conditional process and
introducing the random amplitude modulation through the random var-
iation of the amplitude barameter of the conditional process.

Bilinear Spring System

A single-degree-of-freedom spring-mass-damper system with a
nonlinear stiffness force is considered

m¥ + Bx + f(x) =0 E(t) (1)
A specific nonlinear stiffness force, the symmetric combination of

two regions of linear stiffness force, is considered. The

resulting bilinear stiffness force relation is



sz(x + xo) (x < -xyp)
£(x) = |kqx (-xp £ x £ xp) (2)
k2(x - X ) (xp < X)
where
k
Y2 = —i
ko
2
X = - Y

The stiffness force relation is plotted in figure 1 as a function
of the displacement. The symmetric stiffness force has two (the
inner and the outer) linear regions which intersect at the dis-
placement breakpoint Xp -

The response of the bilinear spring system to random excita-
tion is dominated by one of the two linear regions in the limiting
response cases. In the limit of small displacements relative to
the breakpoint, the response is dominated by the inner linear
region of the bilinear stiffness force. The limit of small dis-
placements corresponds to a large value of the breakpoint Xp or
to a small value of the amplitude parameter ¢ or to both. In
the limit of large displacements, the response is dominated by the
outer linear region. Thus, the solution for the response of the
nonlinear system to the random excitation has these two limiting
cases plus intermediate cases where both regions of the stiffness
force significantly influence the system response, as 1s discussed
subsequently.

Conditional Process
The excitation process of the bilinear spring system (eq. (1))

is a Gaussian white noise process which is multiplied by an
8



amplitude parameter o. The excitation process is accordingly con-
sidered to be a conditional process, that is, a Gaussian white
noise process with a given value of the amplitude parameter.

Thus, the excitation process has an arbitrary reference value of
the power spectral density function which is multiplied by the
square of the amplitude parameter. The dynamic response of the
bilinear spring system is described in probabilistic terms by the
joint probability density function of the system displacement and
velocity, which is conditional on the value of the amplitude param-
eter. From this function the associated moments and exceedance
expression for the response to the conditional process can be
determined.

density function of the system displacement and velocity from the
application and solution of the Fokker-Planck equation is dis-
cussed in detail in appendix B. The displacement and velocity of
the system response are independent for the conditional process

p(x,vic) = p(xlo) p(vlo) (3)

where v = x. Thus, the displacement and velocity can be consid-
ered separately. By use of the Fokker-Planck equation, the
probability density function of the displacement is

CO exp - ‘*‘—1—2'—2[()( + XO)2 + YZXbXO:,} (X < —Xb)
2A o
x2
2
x1 9

p(XIO) = Co exp - ———1— X2 (—Xb é X é Xb)
2A 2 '

Co exp /- —~—15—5[}X - xo)2 + szbxo] (xp < x)
2AX2 ¢} ’




where

A.-2 k
x2_ _ X1 2 (5)

The quantity CO is a normalization constant. The displacement
is non-Gaussian because of the nonlinearity of the stiffness
force. The probability density function consists of Gaussian
regions which correspond to the linear regions of - the symmetric
stiffness force relation. The mean and variance of the distri-
butions within these regions are those of the corresponding lin-
ear systems. The probability density function is Gaussian in
the limits of zero and infinite values of the stiffness break-
point Xy and has the functional forms for the corresponding lim-
iting linear systems. The effects of the stiffness nonlinearity
are shown in a concise form by the conditional variance of the
displacement, which is calculated from the conditional probabil-

ity function of the displacement (eq. (4)),

E[x2]0] = 0,02 = A 2(0)0? (6)

(v - 1){} %; n(y2 - T)e'“z * [1 + 20 - 1)n2]g(y,n{}

é.}_(i(.il = 1 + A— L - e i~ R - ——— e
Ax12 erf n + g(v,n)
(7)
where
N o= ——b
JEAX1G

glvy,n) = v exp[(72 - 1)n2] erfe(vyn)

10



The conditional standard deviation is expressed in terms of the
standard deviation factor A. This notation is convenient since
the standard deviation factor is independent of the amplitude
parameter ¢ for linear systems.

The dependence of the standard deviation factor of the dis-
placement upon both the amplitude parameter ¢ and the stiffness
displacement breakpoint Xp is shown in figures 2 and 3. Figure 2
shows the standard deviation factor of the displacement AX
(eq. (7)) in nondimensional form as a function of the amplitude
parameter. The relationship is shown for the value of the parame-
ter y (eq. (5)) equal to two. In this case the incremental stiff-
ness force is decreased and the associated standard deviation fac-
tor is increased in the outer linear region. The standard devia-
tion factor of the displacement is dominated by the inner or outer
regions of the stiffness force relation (eq. (2)) in the limits of
very small or very large displacements, respectively. The stan-
dard deviation factor of the displacement approaches that of the
inner linear system Ayy in the limit of small values of the
amplitude parameter o¢. Similarly, the factor approaches that of
the outer linear system Ay, as the amplitude parameter becomes
large. The same response pattern occurs in the limits of large
and small values of the stiffness breakpoint Xpo respectively.
Thus, the standard deviation factor of the displacement shows the
two limiting cases of the bilinear spring system. The standard
deviation factor of the displacement is plotted in a different,
normalized form in figure 3 for several values of the parameter «y.
Again, the standard deviation factor shows the two limiting cases
and the intermediate states of the bilinear stiffness force rela-
tion. In normalized form the standard deviation factor is weakly
dependent on the value of the parameter «.

The standard deviation of the displacement is plotted in non-
dimensiocnal form in figure 4 as a function of the amplitude
parameter for one value of the parameter +y. The values shown in
figure 4 correspond to those in figure 2; the two quantities are

related by equation (6). For linear systems the relationship of

11



figure Y4 is linear since the standard deviation factor is inde-
pendent of the amplitude parameter. Deviations from a linear
relation are due to the nonlinearity of the dynamic system.
Also shown in figure 4 is the Dempster-Roger approximation for
the standard deviation, which is discussed subsequently.

The probability density function of the velocity of the
bilinear spring system is determined by the Fokker-Planck equa-
tion for the conditional process. By using the results of
appendix B, the conditional probability density function of the

velocity is

2
p(vio) = 1 exp [- —L— (8)
\’217 AVU 2Av20.2

Thus, the velocity is a Gaussian random variable. The standard
deviation factor of the velocity AV is independent of the
amplitude parameter. In the present case the velocity is not
affected by the nonlinearity in the stiffness force.

The exceedance expression (the expected frequency of posi-
tive slope crossings of a given level) is determined from the
joint probability density function of the displacement and

velocity (refs. 18 and 19) as

a

N(x|0)~=~/ﬂ v p(x,vie) dv (9)
0

The relation between the exceedance expression and the probability
density function of the displacement is obtained by substituting
equations (3) and (8) into equation (9) to obtain

Ayo (10)

N( |0) =
* v

p(xle)

12



In this case the exceedance expression has the same functional
form as the probability density of the displacement. This prop-
erty is a consequence of the independence of the displacement'
and velocity for the conditional process (eq. (3)).

The preceding analysis shows that it is possible to develop
the exact solution for the probability density function of the
system response in the case of the bilinear spring system.
Approximate methods of solution are also examined, since the
approximate methods can be applied to a wider class of nonlinear
dynamic systems. For the present system the results of approxi-
mate solution methods can be compared with the exact solution;
thus, the validity and limitations of the approximation methods
are indicated.

Dempster-Roger approximation.- One approximate solution method
was developed by Dempster and Roger (ref. 3). The Dempster-
Roger approximation, which was developed from the results of ana-

log computer studies of nonlinear systems, specifically considers
the variation of the standard deviation of the displacement with
the amplitude parameter o. For small values of the amplitude
parameter the standard deviation of the displacement is determined
by the inner region of the stiffness curve. For large values the
standard deviation is determined by the outer region of the stiff-
ness curve. Accordingly, the variation of the standard deviation
of the displacement with the amplitude parameter is approximated
with a bilinear relation
Ax'lc (0 £ 0 < op)
9%c,dr ~ . (11)
szo + (Ax1 - Ax2)°b (ob < g)

The standard deviation of the displacement can be determined
within the accuracy of the Dempster-Roger approximation if the
value of the amplitude parameter breakpoint 0, can be deter-
mined. Since the exact relation is known in this case, the value
of this breakpoint can be determined. By using the exact relation

13



for the standard deviation of the displacement (egs. (6) and (7)),
and developing the asymptotic expansion for large values of the
amplitude parameter, the relation for the amplitude parameter

breakpoint is

op = -k ZR(y + 1) (12)

VEF Axl

Based upon analog computer studies of control surface limiting
effects in aircraft response problems, the following relation was

used in reference 3:

1 *p
Ob:———— (13)
V2 Ay1

This expression has the same functional relation between the sys-
tem parameters as equation (12), but omits the dependence on the
response in the second linear region which appears through the
parameter Y. For the cases considered in reference 3, equa-
tion (13) predicts values of the amplitude parameter breakpoint
which are smaller than the values given by equation (12).

A comparison of the Dempster-Roger approximation (egs. (11)
and (12)) and the exact relation (egqs. (6) and (7)) for the stan-
dard deviation of the displacement is plotted in figure 4 in non-
dimensional form as a function of the amplitude parameter. The
approximation gives the correct behavior in the limits of small
and large values of the amplitude parameter. Figure 5 shows the
corresponding comparison of the approximate and exact values of
the standard deviation factor of the displacement, which is
plotted in nondimensional form as a function of the amplitude
parameter. (Fig. 5 also shows results from another approximate
method which are discussed subsequently.) The exact relation is
the same as that plotted in figure 2. Again, the Dempster-Roger
approximation gives the correct behavior in the limits of small
and large values of the amplitude parameter, but gives a low esti-
mation of the standard deviation factor for intermediate values.
14



In the Dempster-Roger approximation the bilinearity in the
displacement is replaced with a bilinearity in the amplitude
parameter o. The resulting approximate dynamic system is linear
for the response to the conditional process, that is, for a given
value of the amplitude parameter. The conditional response of the
nonlinear system is that of a linear system whose standard devia-
tion factor for the displacement depends on the amplitude parame-
ter. Thus, the system response to the conditional process is
Gaussian. The displacement has a zero mean value and a standard
deviation given by equation (11). The probability density func-
tion of 'the velocity is not affected by the stiffness nonlinearity,
an assumption which matches the exact solution in this case.

Thus, the joint probability density function of the displacement
and velocity, and the exceedance expression are known for the con-

ditional response.

Equivalent linearization approximation.- Another method of

appproximate solution for the response of nonlinear dynamic sys-
tems is the equivalent linearization technique. Discussions of
this technique are given in references 10, 11, 19, and 20.

In the equivalent linearization technique the nonlinear
response forces are replaced by equivalent linear relations. The
differential equation of the equivalent linear system is that of
the original system (eq. (1)), the nonlinear stiffness force being

replaced by the equivalent linear relation
mx + BX + k(o) x = 0 £(t) (14)

The coefficients of the equivalent linear forces are deter-
mined by the condition that the variance of the difference between
the nonlinear and the equivalent linear response forces be a mini=-
mum. For the present system with nonlinearity in the stiffness

force only, the variance to be minimized is
E{f(x) - k (o) x12|o) (15)

15



The value of the equivalent linear stiffness coefficient ke(a)

which minimizes this quantity is

Elx £(x)lo]

E[leo]

The indicated statistical averages are determined from the condi-

ke(o) = (16)

tional probability density function of the response of the equiva-
lent linear system. The specific relations for the required sta-

tistical averages are

Blx £ lo) = [ x £0x) po(xlo) dx (17)

-0

E|:X2|o:| = oxc,e2 = Axez(c) o2 (18)

The displacement and velocity of the response of the equiva-
lent linear system to the Gaussian conditional process are both
Gaussian and are independent. By using the conditional variance
(eq. (18)), the probability density function of the displacement
is

2
P (x10) = —=—1— & /2hxe"o" (19)

VE?AXeo

Since the standard deviation of the velocity is not affected by
the nonlinearity of the stiffness force in this case, the associ-
ated probability density function is the same as the exact rela-
tion (eq. (8)).

The equivalent linear stiffness coefficient and the standard
deviation factor of the displacement are related in a simple man-
ner for the linear system of equation (14) with white noise

excitation:
16



Axez(") = _Kq
2
Ax1 ke(o)

(20)

Combining equations (16) to (18) with equation (19) and using the
relation for the bilinear stiffness force equation (2) yields the
relation for the equivalent linear stiffness coefficient as

X X
kK (g) = kq erf[——Db _ k, erfe[—D (21)
et ? 1 <\/§Axe°> T %2 <\/2_Axe°

The equivalent linear stiffness coefficient and the associated
standard deviation factor of the displacement are determined as a
function of the amplitude parameter by combining equations (20)
and (21). The equations are solved numerically by iteration. The
equivalent linear stiffness coefficient is plotted in figure 6 in
nondimensional form as a function of the amplitude parameter for
the value of the parameter vy used in figures 4 and 5. The value
of the equivalent linear coefficient approaches the values of the
stiffness coefficients of the inner and outer regions of the
stiffness force relation in the limits of small and large values
of the amplitude parameter, respectively.

The standard deviation factor of the displacement of the
equivalent linear system is plotted in figure 5 in nondimensional
form as a function of the amplitude parameter. The standard
deviation factor corresponds to the values of the equivalent 1lin-
ear stiffness coefficient shown in figure 6; the two quantities
are related by equation (20). From figure 5 it is seen that the
equivalent linearization method gives results which are very close

to the exact results for the standard deviation factor of the
displacement.

Amplitude Modulated Process

The solution for the response of the bilinear spring system
to excitation by the amplitude modulated random process is devel-

17



oped in this section. The formulation and the analysis of the
response of dynamic systems to the amplitude modulated random pro-
cess are discussed in appendix A. The response of a dynamic sys-
tem to the amplitude modulated process is developed from the
response to the Gaussian conditional process by introducing the
random variation of the amplitude parameter. The probability den-
sity function of the amplitude parameter 1is specified to have a

Gaussian related form:

0 (o < 0)
p(o) = (22)

V% 1 g-02/2p2 (0 < o)

A

The probability density function of the displacement of the bilin-
ear spring system is determined from the conditional probability
density function of the displacement and the probability density

function of the amplitude parameter

p(x) = ./. p(xlo) p(o) do (23)
0

Exact solution.- The exact solution for the response of the

bilinear spring system to the amplitude modulated process is
obtained by combining the exact solution of the response to the
conditional process with the random variation of the amplitude
parameter. Although the resulting expressions are thus identified
as the exact solution, the development of the expressions for the
response to the amplitude modulated process requires the use of
the quasi-steady approximation, that is, the dynamic effects of
the slowly varying amplitude process are omitted. In this sense
the resulting expressions are approximate, as discussed in

appendix A.

18



The exact expression for the conditional probability density
function of the displacement is equation (4). By combining equa-
tions (4) and (22), the probability density function of the dis-
placement response to the amplitude modulated random process is
obtained from equation (23). The resulting probability density
function of the displacement cannot be expressed in analytical
form since the required integration over the ¢ variable is
intractable.

The variance of the displacement is obtained from the condi-
tional variance by using the probability density function
(eq. (23))

E[x2] = 4,2 - / E[x2lo] p(o) do = / A,2(c) o2 ple) do  (24)
0

0

The last expression introduces the standard deviation factor by
using equation (6). The required integration over the amplitude
parameter o 1is intractable and must be evaluated numerically.
The exact values of the standard deviation of the displacement are
shown in figure 7 in nondimensional form as a function of the
standard deviation b of the amplitude process. (Fig. 7 also
shows two approximate results which are discussed subsequently.)
The results in figure 7 for the response to the amplitude modu-
lated process correspond to those in figure 5 for the conditional
process. The standard deviation of the displacement approaches
that of the two limiting linear systems of the stiffness force
relation for the limiting values of both the standard deviation of
the amplitude process and the breakpoint of the stiffness force
relation.

The probability density function of the velocity of the sys-
tem response to the amplitude modulated process is determined from
that for the response to the conditional process as

19



p(v) = / p(vig) p(o) do (25)
0

For the conditional process the velocity of the system response is
Gaussian (eq. (8)). Thus, the velocity is itself an amplitude
modulated variable for the response of a linear system

p(v) = —1— Ko<lll> (26)
ﬂAVb Avb

The quantity K0 is a modified Bessel function of zero order
(ref. 17).

The exceedance expression for the displacement response to
~the amplitude modulated process is obtained from that for the con-

ditional process

<0

N(x) = J(. N(xlo) p(o) do (27)
0

This equation follows from the relation between the exceedance
expression and the joint probability density of the displacement
and velocity, by using the relation for that probability density
function for the amplitude modulated process which is similar to
equation (23). By using the exceedance expression (eq. (10)) for
the conditional process and equation (27), the relation for the
exceedance expression of the displacement response to the ampli-
tude modulated process is

N(x) = 5\[-;:/0 p(xle) plo) o do (28)

The two probability density functions are given in equations ()
and (22). The required integration over the ¢ variable is
20



intractable and must be evaluated numerically. The resulting
exceedance expression for the exact solution of the system dis-
placement is plotted in figure 8 in nondimensional form as a func-
tion of the displacement level. The system parameters are the
same as those used in figure 7. The exact exceedance expression
shows the predominantly exponential behavior of the amplitude modu-
lated process. For comparison, the exceedance expressions for the
limiting linear systems corresponding to the two regions of the
bilinear stiffness force relation (eq. (A12)) are also plotted.
The exact exceedance expression shows the dominant influence of
the inner and outer regions of the bilinear stiffness in the
limits of small and large values of the nondimensional response
level, respectively. For large response levels the exact exceed-
ance expression parallels that of the linear syséem of the outer
region of the bilinear stiffness force relation, but is signifi-
cantly lower in value.

Dempster-Roger approximation.- The Dempster-Roger approxima-

tion specifically considers the variation of the amplitude param-
eter in the conditional process. The corresponding variance of

the response to the amplitude modulated process follows from the
conditional standard deviation (eg. (11)). The required integra-
tion over the amplitude parameter in equation (24) can be evaluated
because of the simple relation which is assumed for the conditional
standard deviation

°x,dr2 = AX12b2{%rf r + [72 + ZCZ(Y - 1)2]erfc z

Z(y - 1)2e’5%} (29)

5P

where

r = 2b -y + 1 _*b
V2b 2\ A qb
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This approximation for the standard deviation of the displacement
is plotted in figure 7 in nondimensional form as a function of the
standard deviation b of the amplitude random process. The
approximation shows the correct qualitative properties, particu-
larly the dominant influence of the inner and outer regions of the
bilinear stiffness force in the limiting cases. However, for the
intermediate cases the Dempster-Roger approximation predicts
values below the exact values of the standard deviation of the
displacement.

Equivalent linearization_approximation.- The variance of the

displacement response to the amplitude modulated process for the
equivalent linearization technique is obtained from equation (24)
by using the approximation for the conditional variance (egs. (20)
and (21)). The required integration on the amplitude parameter is
"done numerically. The resulting standard deviation of the dis-
placement for the equivalent linearization technique is plotted

in figure 7 in nondimensional form as a function of the standard
deviation of the amplitude process. The standard deviation
obtained by the equivalent linearization technique closely matches
the exact results for all values of the standard deviation of the
amplitude process.

The corresponding exceedance expression is determined from
equation (28) by using the conditional probability density func-
tion of the displacement for the equivalent linear system (egs. (19)
to (21)). The required integration is done numerically. The
resulting exceedance expression is plotted in figure 9 in nondi-
mensional form as a function of the displacement level, together
with the corresponding exact expression from figure 8. The
exceedance expression for the equivalent linearization technique
closely matches the exact expression at low response levels. At
higher response levels the approximate exceedance expression
underestimates the system displacement. The underestimation of
the exact exceedance expression is consistent with the underesti-
mation of the exact values of the standard deviation (fig. 7).
Also, a comparison of figures 7 and 9 shows that the equivalent
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linearization technique gives a better estimate of the standard
deviation than of the exceedance expression of the system dis-

placement. This is a general property since the ftechnique does
not account for the non-Gaussian aspect of the response to the

conditional process.

The present development applies the equivalent linearization
technique to the conditional process. Thus, an equivalent linear
stiffness force is determined for each value of the amplitude
parameter. The equivalent linearization technique can be applied
in an alternate manner, which is directly to the amplitude modu-
lated process. In this alternate approach the nonlinear system is
replaced by a single linear system without considering the condi-
tional process. By using the equivalent linearization condition,
the minimization of the variance of equation (15), the expression
for the stiffness coefficient of the single equivalent linear sys-

tem is

Elx £(x)]
Ke am = ——r—er (30)
’ 2
B [x?]
In this case the response of the equivalent linear system is

itself an amplitude modulated process for the response of a linear
system

p (x) = —1 — go(—dxt _ (31)

©.an 1TAxe,amb (Axe,amb

Ne,am(x) = NO exp —=lx! (32)
xe,amb

The statistical averages in equation (30) are based on the proba-

bility density function of the single equivalent linear system

(eq. (31)). The equivalent linear stiffness coefficient (eq. (30))

is a function of the standard deviation b of the amplitude process.
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The resulting variance and exceedance expression are thus deter-
mined for a given value b. The exceedance expression is a single
exponential function (eq. (32)). This relation would appear as a
linear function on the coordinates of figure 9. Comparison of
this approximate relation with the exact exceedance expression
shows that a single exponential function is a poor approximation
for the entire range of the displacement levels. Thus, the appli-
cation of the equivalent linearization technique directly to the
amplitude modulated process gives a significantly poorer approx-
imation than the indirect application through the conditional

process discussed previously.

Summary and Discussion of Response of Symmetric
Bilinear Spring System

The response of the dynamic system with a symmetric bilinear
spring to excitation by the amplitude modulated white noise pro-
cess is determined by Fokker-Planck equation. The solution pro-
cedure involves determining the response to the Gaussian condi-
tional process and then introducing the random variation of the
amplitude process. The probability density functions of both the
displacement and velocity, the associated variances, and exceed-
ance expression are determined. Two approximate analytical tech-
niques are applied to the same system. The accuracies of these
techniques are aséessed by comparison with the exact solution.

The approximation techniques introduce the system nonlinear-
ity through the standard deviation factor A of the displacement
response to the conditional process. The dynamic system is consid-
ered to be linear for any given value of the amplitude parameter
o of the excitation conditional process. The critical point of
the approximation techniques is the determination of a functional
relation between the standard deviation factor and the amplitude
parameter. The Dempster-Roger approximation specifies a bilinear
relation between these two quantities. The limitation of this
method is the lack of any general procedure for finding the
24



specific form of this bilinear relation. In the bilinear spring
system this relation can be determined since the exact solution
for the response is known. In this case the Dempster-Roger '
approximation gives the correct qualitative properties of the
response, but generally gives values of the displacement response
which are appreciably below the exact ones. The equivalent lin-
earization technique replaces the nonlinear system with an equiv-
alent linear one whose properties are determined by the tech-
nique. For the bilinear spring system the equivalent lineariza-
tion technique, which is applied to the conditional process, gives
a good approximation to the exact values of the system response to
the amplitude modulated process.

The preceding development considers the response of a sym-
metric nonlinear system. As a result of the symmetry property,
all the odd order moments are zero. The case of a nonsymmetric

bilinear spring system is considered briefly in appendix C.
RESPONSE OF AUGMENTED AIRCRAFT SYSTEM

A method for the analysis of nonlinear effects in aircraft
dynamic response to atmospheric turbulence is developed in the
present section. The method is the combination of the application
of the equivalent linearization technique for the analysis of non-
linear dynamic systems with the development of the amplitude modu-
lated process used to model atmospheric turbulence. The equiva-
lent linearization technique is applied to replace the nonlinear
dynamic system with an equivalent linear system. The response of
the resulting dynamic system to a Gaussian conditional process
with a given amplitude parameter is developed by the méthods of
linear system theory. The response of the system to the amplitude
modulated process is then developed by introducing the random
variation of the amplitude parameter. The method of analysis is
applied to one example of the longitudinal motion of an aircraft
with an autopilot operating in a pitch-hold mode. The nonlinear
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element is the limiting of the control surface displacement which

is commanded by the autopilot.
Equations of Augmented Aircraft

An aircraft which is representative of the class of small
corporate jet transports is considered. The present combination
of aircraft and stability augmentation system was considered in
detail in reference 21. The longitudinal equations of motion and
the associated control law for the linear aircraft syétem are
summarized in appendix D. The linear equations of motion are
basically the classical equations of the dynamic stability of a
rigid aircraft (ref. 22) with the addition of the forces due to
the turbulence field. Quasi-steady aerodynamics are used except
for the inclusion of a wing-tail convective time lag. The control
system operates in a pitch-hold mode by controlling the elevator
deflection.

A block diagram of the basic aircraft response system,
including the nonlinear effect of the control surface displacement
limiting, is shown in figure 10. The aircraft dynamics consist of
the linear response of the basic aircraft motion. The feedback
loop consists of four elements. The first element is the sensor
which measures the pitch and pitch rate of the aircraft motion.
The second element accounts for the dynamics of the servosystem
which drives the elevator deflection. These two elements form
the control law of the autopilot system. The third element is the
displacement limiting of the elevator deflection. The fourth ele-
ment generates the aerodynamic forces due to the physical motion
of the control surface. Except for the displacement limiting of
the elevator, the aircraft system is linear.

The control law specifies the elevator deflection which is
commanded by the control system. Since the autopilot is designed
to reduce aircraft pitching motion, the control system consists of
gains on the pitch and the pitch rate motions and includes a term
accounting for the dynamics of the elevator servosystem
26



tonde + 8o = Kgo + K6 (33)

The aerodynamic forces which are generated by the physical
deflection of the elevator are given by linear aerodynamic theory

The relation for the aircraft moment due to the physical elevator
deflection is

My = quECmGGp (34)

The main quantity of interest is the aerodynamic moment coeffi-
cient for the elevator deflection Ch.- The aerodynamic lift
due to the physical elevator deflection is given by a similar

relation.

Both the control law and the elevator aerodynamic relations
are linear. There are two variables associated with the elevator
action: the commanded deflection from the control law and the
physical deflection which generates the aerodynamic forces. These

two quantities are related in a nonlinear manner because of the
deflection limiting

F' $p1 ( 6 < - Gpl}
65 = h( ) = |8 (=81 5 8 £ 85) (35)
_Gpl (Gpl < 8,)
This relation is plotted in figure 11. For commanded deflections

within the symmetric limit values, the two quantities are equal.
If the commanded deflection is outside the limit values, then the
physical deflection is equal to the limit values. Since the aero-
dynamic forces are proportional to the physical elevator deflec-
tion (eq. (34)), the relation plotted in figure 11 is also the
relation between the aerodynamic forces and the commanded eleva-
tor deflection.
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The preceding relations are combined with those for the basic
aircraft dynamics to give the nonlinear equations of motion for
the augmented aircraft. The system of equations has three coor-
dinates of basic aircraft motion: perturbations in forward speed,
angle of attack, and pitch angle. The system has two coordinates
of elevator action: commanded and physical elevator deflections.
The system has three equations for the basic aircraft motion which
include the aerodynamic forces due to the physical elevator
deflection. The system has two equations related to the control
system action: the control law (eq. (33)) and the nonlinear rela-

tion between the two elevator deflection variables (eq. (35)).

Application of Equivalent Linearization Technique

The results of the previous application of this method to the
bilinear spring system give reasonable confidence that the method
will give a good estimation of the response of the present air-
craft system. The confidence in the application of the method is
based upon the similarity in the mathematical properties of the
two dynamic systems. This point is discussed before applying the
method to the aircraft system.

Similarity of bilinear spring and aircraft systems.- The dif-

ferential equation of the bilinear spring system (eq. (1)) is
rewritten in a form which is similar to that of the augmented

aircraft
mX + gx + kox = -(kq - ko) h(x) + o £ (t) (36)

The response stiffness force has been split into two terms: the
basic linear term of the outer linear region and the nonlinear
term which is now a control system feedback loop. The nonlinear
displacement function h(x) is that of equation (35) and fig-

ure 11 with appropriate change in the notation. A block diagram
of the resulting system is shown in figure 12. (The quantity s
is the Laplace transform variable.) In the block diagram the basic
28




linear dynamic system is excited by a Gaussian white noise process
with amplitude parameter ¢ and by the nonlinear feedback term.

The block diagram of the augmented aircraft system is shown
in figure 13. This diagram gives specific relations for the sys-
tem elements shown in figure 10. The relation for the aircraft
dynamics gives the pitch response to the aerodynamic force inputs.
In developing this relation, whose specific form is given in

appendix D, the secondary effects of the forward speed perturbation

and wing-tail convective time lag have been omitted. The feedback
loop has four elements which correspond to those of figure 10.
Comparison of figures 12 and 13 reveals the simiiarity of the
bilinear spring and the aircraft systems. The dynamic properties
of the two basic systems have the same functional form, that is, a
single oscillatory mode. Both feedback systems have an amplitude-
limited displacement which generates a restoring force for the
basic dynamic system. There are, however, several differences in
the feedback loops. The autopilot system has an additional gain
on the pitch rate which has a minor effect on the pitch response.
The other differences in the feedback loop involve dynamic effects
in the servosystem and the elevator aerodynamics. For the param-
eters of the present problem these dynamic effects are negligible
at the frequency of the dominant short-period mode. The remaining
difference between the two dynamic systems is the form of the two
excitation functions. Since the response of the two dynamic sys-
tems is dominated by a single oscillatory mode, the variances of
the response are closely related to the values of the power spec-
tral density function of the excitation process at the frequency
of that mode. However, the nonlinear effects introduce a change
in the frequency of the oscillatory mode. Thus, the variance of
the response is influenced by the frequency dependence of the
power spectral density function of the excitation process, which
for atmospheric turbulence can be considerable. Since the power
spectral density function of a white noise process has a constant
value, this effect is missing in the response of the bilinear
spring system. Thus, there are significant differences in some of
29




the properties of the response of the bilinear spring and the
aircraft systems as discussed subsequently.
Control effectiveness factor.- In the application of the

equivalent linearization technique the nonlinear element is
replaced by an equivalent linear element whose properties are
defined so that the variance of the difference between the
responses of the linear and nonlinear elements is a minimum. In
the present case this condition is applied to the nonlinear rela-
tion between the two elevator deflection coordinates (eqg. (35)).
The equivalent linear relation for the two elevator deflection

coordinates is
6§ = h.8 (37)

The quantity h, 1is the control effectiveness factor (or simply
the effectiveness factor) of the equivalent linear system, which
accounts for the elevator deflection limiting. The variance of

the difference between the nonlinear and the equivalent linear

relations for the physical elevator deflection is

E{[h(dc) - hecc]2 c} (38)

The control effectiveness factor is defined to minimize this

variance

_ El:h(ﬁc) 50'“]
Sy

The indicated statistical averages are based on the response of

the equivalent linear system to the conditional process. The sys-
tem input and the system response are both Gaussian conditional
processes. The probability density-function of the commanded ele-
vator deflection is
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The control effectiveness factor is determined by equation (39),
by using the functional relation for the physical elevator
deflection (eq. (35)) and by using the probability density func-
tion of the commanded elevator deflection of the linearized system
(eq. (40))

[
h, = erf[—PL 41
. = er <\/§Ascev> (1)

(This relation is a special case of eq. (21).) The control
effectiveness factor has a maximum value of one and a minimum
value of Zzero and approaches these values in the limits of small
and large values of the amplitude parameter, respectively. It is
noted that the minimum variance condition on the difference of the
elevator deflections (eq. (38)) is also a minimum variance condi-
tion on the differences of the associated elevator aerodynamic
forces (eq. (34)) since the quantities are proportional in the
present case.

Once a linear relation between the two elevator deflection
coordinates (eq. (37)) is obtained, one of these coordinates can
be eliminated from the equations of the dynamic system. One
approach is the elimination of the physical elevator deflection.

The resulting control law and aerodynamic force relation are

tohde + 8. = Ko + K'e.e (42a)

Mg = quECmGhesc (42b)

The equations for the resulting equivalent linear system are the
same as for the original linear system of appendix D except that
the effectiveness factor is introduced into the aerodynamic deriv-
atives of the elevator deflection. The elevator deflection
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coordinate of the linear system becomes the commanded elevator
deflection. The solution of the linear equations gives the stan-
dard deviation factor of the commanded elevator deflection which
is required for the basic relation (eq. (41)). An alternate but
equivalent approach is the elimination of the commanded elevator
deflection. The resulting control law and aerodynamic force rela-

tions are

tchép +6._ =hK.e + h Ko (43a)

In this form the effectiveness factor is introduced into the two
control system gains. The elevator deflection coordinate of the
linear system becomes the physical elevator deflection. The solu-
tion of the linear equations gives the standard deviation factor
of the physical elevator deflection. This relation must be
transformed by equation (37) to give the standard deviation factor
of the commanded deflection which is required for the basic rela-
tion (eq. (41)).

The preceding development gives the essential relations for
applying the equivalent linearization technique to the nonlinear
control-surface limiting effect in aircraft response. The applica-
tion follows this procedure. First, the equivalent linearization
technique is applied to the nonlinear system and thus introduces
the effectiveness factor into the equations of the dynamic system.
Second, the resulting linear equations of motion are solved for
the response to the Gaussian conditional process, for a series of
values of the effectiveness factor between zero and one. This
procedure assumes that the equivalent linear system is stable for
all values of the effectiveness factor. The solution gives the
standard deviation factors of the conditional response, which afe
functions of the effectiveness factor but not of the amplitude
parameter o. Third, the relation between the standard deviation
factor of the commanded elevator deflection coordinate and the
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effectiveness factor is combined with the basic relation

(eq. (41)). By eliminating the elevator quantity, the effective-
ness factor becomes a known function of the amplitude parameter.

By using this relation, the standard deviation factors of all
response quantities are known functions of the amplitude parameter.
Finally, the system response to the amplitude modulated process is
developed from the conditional response by introducing the random
variation of the amplitude parameter.

Development of Response of Augmented Aircraft System

The procedure for implementing the equivalent linearization
technique is applied to the example of control surface limiting in
aircraft response to atmospheric turbulence. The example uses the
equations of motion and the data of reference 21, which are dis-
cussed in appendix D. The effectiveness factor is introduced into
the linear equations of motions in the terms for the aerodynamic
1ift and moment due to the elevator deflection. The equations are
solved for the standard deviation factors of the aircraft response,
for a series of values of the effectiveness factor between zero
and one. The resulting standard deviation factors of both the
commanded and the physical elevator deflection coordinates are
plotted in figure 14 in normalized form as functions of the effec-
tiveness factor. They are normalized by their maximum values,
which are equal to the standard deviation factor for the elevator
deflection of the fully effective control system. As the deflec-
tion limiting becomes significant, the value of the effectiveness
factor decreases from the value of one down to zero and the stan-
dard deviation factors of both elevator deflection coordinates
decrease from their maximum values down to zero. The difference
between the standard deviation factors of the commanded and the
physical elevator deflections is a direct result of the elevator
deflection limiting. The decrease of the standard deviation
factor of the commanded elevator deflection from its maximum
value is the effect of the elevator deflection limiting upon the

33



aircraft dynamic system. By using the results of figure 14 and

the basic relation (eq. (41)), the relation between the effec-
tiveness factor and the amplitude parameter is determined by
eliminating the standard deviation factor of the commanded eleva-
tor deflection. The resulting relation is plotted in figure 15 in
nondimensional form. By using this relation, the standard devia-
tion factors of all response quantities, which are known functions
of the effectiveness factor from the solution of the equations of
motion, become known functions of the amplitude parameter. For

the elevator deflection coordinates, this relation is obtained by
combining results of figures 14 and 15; thus, figure 16 shows the
relations in nondimensional form as functions of the amplitude
parameter. These relations show the transition from the full activ-
ity of the elevator to the reduced activity as either the ampli-
tude parameter of the input random process is increased or the ele-
vator deflection limit is decreased.

The standard deviations of the two elevator deflection coor-
dinates for the response to the amplitude modulated random pro-
cess are obtained from the conditional response by introducing the
random variation of the amplitude parameter (egs. (22) and (23)).
The resulting standard deviations for the response to the ampli-
tude modulated process are plotted in figure 17 in nondimensional
form as functions of the standard deviation of the amplitude modu-
lated process. The response shows the transition from the full to
the reduced activity of the control system as either the standard
deviation of the amplitude modulated process is increased or the
elevator deflection 1limit is decreased.

The pitch response of the aircraft is examined next. This
quantity particularly shows the effect of the elevator deflection
limiting since the control system is designed to reduce the pitch
angle changes due to the atmospheric turbulence. The relation
between the standard deviation factor of the pitch angle and the
effectiveness factor is shown in figure 18 in nondimensional form.
This relation is obtained from the solution of the equivalent
linear form of the dynamic equations of the augmented aircraft
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system. By combining the relations of figures 15 and 18, the stan-
dard deviation factor of the pitch coordinate is a known function
of the amplitude parameter. The resulting relation is shown in
figure 19 in nondimensional form. The standard deviation factor

of the pitch coordinate shows the transition from its minimum

value with full operation of the control system to the increased
values as the control system effectiveness is reduced because of
the elevator deflection limiting with increased values of the
amplitude parameter. The pitch response to the amplitude modulated
process is obtained by introducing the random variation of the
amplitude parameter. The resulting relation for the standard devia-
tion of the pitch coordinate is plotted in figure 20 in nondimen-
sional form as a function of the standard deviation of the ampli-
tude modulated process. From the result of figure 20, the pitch
response approaches that of the fully augmented airplane as the
effect of the elevator deflection limiting vanishes in the limit
either of small values of the turbulence intensity or of large val-
ues of the elevator deflection limits. 1In the opposite limits the
pitch response approaches that of the unaugmented aircraft.

The pitch rate is now examined. By following the steps of
the procedure, the relation between the standard deviation factor
of the pitch rate and the amplitude parameter is determined. The
resulting relation is plotted in figure 21 in nondimensional form.
The dependence upon the amplitude parameter is weaker for the
pitch rate than for the pitch itself (fig. 19). However, the
standard deviation factor of the response rate is not independent
of the amplitude parameter as it is in the case with the bilinear
spring system. This difference between the responses of the two
dynamic systems is primarily the result of the differences between
the spectral functions of the excitation processes of the two
systems.

The exceedance expression for the pitch response is developed
from the previous results. Since the conditional probability den-
sity functions of the pitch and pitch rate are both Gaussian for
the response of the equivalent linear system, the exceedance
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expression for the conditional process is known. The exceedance
expression for the response to the amplitude modulated process is
determined from the conditional expression and equation (27) as

N(e) = _1_f°° ié_e_(_gl.exp ~e 2 p(o) do (4y4)
2n 0 Aee(o) 21-\ee2(cr)o2

The two standard deviation factors are known functions of the
amplitude parameter (figs. 19 and 21). The required integration
is performed numerically. The resulting exceedance expression is
shown in figure 22 in nondimensional form as a function of the
pitch response level for two values of the elevator displacement
limit. The exceedance expression shows the increased pitch
response of the aircraft as the value of the elevator deflection
limit is decreased. The exceedance expressions for the aircraft
pitch response with the autopilot on and with the autopilot off
are also shown. The exceedance expression generally follows that
of the augmented aircraft at low response levels. At the higher
response levels the exceedance expressions begin to parallel that
of the unaugmented aircraft, but are significantly lower in value.

Discussion

The present method of the combination of the equivalent lin-
earization technidue with the development of the amplitude modu-
lated random process can be applied to more general forms of non-
linearity in dynamic systems. A variety of nonlinear effects can
be important in aircraft response to atmospheric turbulence, such
as the inherent nonlinearities in the aircraft equations of
motion, aerodynamic effects, pilot action, and several aspects of
control system action. The present example uses a simple form of
the equivalent linearization technique which replaces a static
nonlinearity by a single linear gain. Many other forms of the
technique have been developed which allow the application of the
method to a wide variety of nonlinear dynamic systems. The
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formulation and application of the equivaleht linearization tech-
nique to combinations of static nonlinear elements are given in
references 11 and 23. Several forms of the technique which con-
sider the dynamic properties of the nonlinear elements are
reviewed in references 12 and 20. These alternate forms of the
equivalent linearization technique can be directly applied to the
present method of analysis since the application of the technique
is separate from the development of the amplitude modulated
process.

The present development can be extended to include other
functional forms of the probability density of the amplitude
parameter. In the quasi-steady approximation, there is no
restriction on the form of the random variation of the amplitude
parameter since the dynamic effects of that random variation are
omitted. The present development has considered a Gaussian
related form of the probability density function of the amplitude
parameter. In aeronautical applications a modification of this
form is used for atmospheric turbulence based on the concept of
multiple types of turbulence (ref. 13). The probability density
function of the amplitude parameter is formed by the sum of two
(or more) Gaussian related functions

0 (¢ < 0)

_ 2 2 2
p(o) = F S p, - /.2bi o

1 (45)
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The quantities Pi and by are the probability and intensity
parameters of atmospheric turbulence, respectively. The response
of the augmented aircraft system to an amplitude modulated process

with this form for the random variation of the amplitude parameter
can be developed from the previous results. For example, the
exceedance expression is found from the general relation (eq. (27)).

By using the nondimensional form of the previous results, the
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new exceedance expression for the aircraft pitch response is

- 2 0
N(e) = 3 PiN( > (46)

iz 1 Ag 1bj

The results for other response quantities can be developed in the
same manner.

The present analysis is restricted to symmetric nonlinear sys-
tems; thus, the response has zero mean values. This restriction
applies to cases of aircraft response where the control surface
limiting is symmetric. If the limiting is not symmetric, then a
modified form of the analysis must be used. The case of a non-
symmetric bilinear spring system is examined in appendix C and
includes the analysis of the response to both the conditional and
the amplitude modulated processes. The primary new feature of the
response is the possibility of a nonzero mean value. Nonsymmetric
control surface limiting effects can be important in aircraft
dynamic response, for example, in an aircraft with a pitch damper
in response to the vertical component of the turbulence. By using
the nonsymmetric bilinear spring system as an analogy, the mean
“ position of the control surface will change with significant
limiting in extreme turbulence, that is, the aircraft retrims
itself.

CONCLUDING REMARKS

A method is developed for the analysis of nonlinearities in
airecraft dynamic response to random atmospheric turbulence. The
method is a combination of the equivalent linearization technique
for the analysis of nonlinear dynamic systems and the development
of the amplitude modulated random process. The equivalent lin-
earization technique is used to replace a nonlinear element by
an equivalent linear one. The response of the equivalent linear
system to a Gaussian random process is developed as a function of
a linearization parameter. By using the equivalent linearization
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technique, the linearization parameter is related to the amplitude
parameter of the excitation random process. Thus, the response to
the Gaussian process is known as a function of the amplitude param-
eter. The response to the amplitude modulated process is then
determined by introducing the random variation of the amplitude
parameter.

The method is applied to the analysis of two nonlinear
dynamic systems. The response of a spring-mass-damper system with
a bilinear spring is analyzed. For this system an exact solution
for the joint probability density function of the displacement and
velocity is obtained by use of the Fokker-Planck equation. The
system response obtained by the equivalent linearization technique
shows good agreement with the exact solution for the response.

The response of an aircraft with an autopilot which drives a dis-
placement-limited control surface is also analyzed. The analyti-
cal method is used to determine the moments and the exceedance
expressions of the aircraft response.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 9, 1976
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APPENDIX A

THE AMPLITUDE. MODULATED RANDOM PROCESS AND
THE FOKKER-PLANCK EQUATION

The basic analytical techniques used in the present study are
discussed in this appendix. The amplitude modulated random pro-
cess and the Fokker-Planck equation are discussed, together with
an application of the Fokker-Planck equation to the analysis of
the response of dynamic systems to the amplitude modulated random

process.
Amplitude Modulated Random Process

The amplitude modulated random process is formed by a local
Gaussian process in combination with a slower random modulation of
the standard deviation of the local process. The random process
is used to model atmospheric turbulence in many aeronautical appli-
cations. The random process was originally developed to account
for the properties of measured atmospheric turbulence data (refs. 13
and 14). The mathematical properties of the process have been
examined and developed in reference 16 where the amplitude modu-
lated random process was referred to as the Press model of atmo-
spheric turbulence.

The defining relation for the amplitude modulated process is

z(t) = r(t) s(t) (A1)

The two component processes (R and S) are specified to be inde-
pendent and stationary. The R process is a rapidly varying
local Gaussian process; the S process is a slowly varying ampli-
tude process which modulates the R component. The joint proba-
bility density function of the amplitude modulated process and the
amplitude component is developed from the defining product rela-
tion (ref. 24)
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p(z,s) = TiT pp(r=z/s) p(s) (A2)

An associated conditional process can be developed from the two
component processes. By using the definition of the conditional
probability density function and equation (A2), the conditional
function is

p(zls) = T%T pp(r=z/s) (A3)

If the probability density functions of the R and S component
processes are given, then the probability density function of the
amplitude modulated process can be determined from the joint den-
sity function by using equations (A2) and (A3)

(o2

p(z) = [ pz,3) as = [ plals) p(s) das (a4)

-0

Since the local R process is Gaussian, the conditional process
is also Gaussian by equation (A3)

2
p(zls) = — 1 exp|—%— : (A5)
V2r A, ls 28,252

This is the locally Gaussian assumption of the original develop-
ment (refs. 13 and 14). The conditional process generates an asso-
ciated set of conditional moments. The most important of these
moments is the variance of the conditional process

E[z2|s] = 4,252 (86)
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Thus the standard deviation of the conditional process 1is the
product of the amplitude parameter s and a standard deviation
factor A, which is independent of s.

The exceedance expression (the expected frequency of positive
slope crossings of a given level) of the process is an important
quantity in the analysis of atmospheric turbulence data and in the
specification of structural fatigue and strength design criteria.
It is developed from the joint probability density of the random

process and its first derivative (refs. 18 and 19)
N(z) = J/' z p(z,z) dz (AT) -
0

The exceedance expression for the conditional process is developed

in the same manner
N(zls) = j[ z p(z,z|s) dz (A8)
0

The exceedance expression for the amplitude modulated process is
obtained from that for the conditional process by using the rela-
tion for the joint probability density function of the random pro-

cess and its first derivative which corresponds to equation (AY4)

N(z) = / N(zls) p(s) ds (A9)

o«

An associated problem is the analysis of the response of
dynamic systems to the amplitude modulated random process. The
problem is difficult to treat in general terms since.the amplitude
modulated process is not Gaussian, However, the problem can be
treated approximately by using the modulation concept that the
2
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amplitude process S 1is slowly varying relative to the local R
component process. Under this concept, which is termed the quasi-
steady approximation, the dynamic aspects of the response are due
to the Gaussian R component process only. Thus, for linear sys-
tems the R component (and the conditional process) of the excita-
tion and the response processes are both Gaussian. For nonlinear
systems the problem is more complicated. The conditional process
of the response is generally not Gaussian. Thus, the properties
of the response can be significantly different from those of the
amplitude modulated excitation process. For example, the standard
deviation factor A of the nonlinear response will generally be a
function of the amplitude parameter s

E[ézls] = Azz(s) s2 (A10)

The amplitude process is specified to be Gaussian, by follow-
ing the original development of reference 13; that is,

p(s) = —1- 1 o-52/202 (A11)

The probabilistic structure of the amplitude modulated process is
completely defined by the Gaussian distributions of the amplitude
and the R component processes. For example, the exceedance
expression is obtained from equations (A8) and (A9), and from use
of the quasi-steady approximation

N(z) = Nge~ |Z1/A2P (A12)

The exponential form of the exceedance expression was the basis of
the original development of the amplitude modulated process in
reference 13.
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Fokker-Planck Equation

The Fokker-Planck equation is a method for analysis of the
response of linear and nonlinear dynamic systems to random pro-
cesses. The method was originally developed in the analysis of
Brownian motion (ref. 25, for example). The development of the
Fokker-Planck equation and examples of its application to nonlin-
ear dynamic systems are given in references 19 and 26. General '
reviews of the method and its application to the analysis of
dynamic systems are presented in references 8 and 9. -

The response of a dynamic system to a random process 1is
described by the associated transition probability density |

function
p = p(¥,t1¥q5,tq) (A13)

This quantity is the probability density function of the response
at time t conditional on the given value of the response at an
earlier time t,. The quantity ¥ 1is the array of independent
variables of the dynamic system. The transition probability den-

sity function is determined by the Fokker-Planck equation

2
3p . _ 2 (a.p) + 12— (8;ip) A1l
2t ayi( P75 ey, ayj( 13P (ATH)

The convention of repeated indices implying a summation is used.
The coefficients are the derivate moments, which are the limiting
values of the first and second moments of the incremental response

of the dynamic system
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® ~N
(!i = 1lim 1_/ Gyi p(y + 6y,t + ‘3t|37,t) d(d?)
§t+0 &t -0
B (A15)
e L f o _ _
85 = Hm = J . svi6yy p(F + 6F,t + 6t]F,t) d(sF) )

In the general case the differential equation for the transition
probability density function has additional terms which involve
higher order derivatives.

However, the associated higher order

derivate moments are zero and, consequently, these terms are also

zero in the present application, as discussed subsequently.
Fokker-Planck Equation and the Amplitude Modulated Process

The Fokker-Planck equation is applied to the analysis of the
response of dynamic systems to the random process formed by the
product of two Gaussian processes (eq. (A1)). The formulation

requires the development of the derivate moments for the composite
dynamic system which includes the differential equations for both

and S. In
component is a Gaussian white noise

the dynamic system and the two component processes, R
the present example the R
process. The amplitude component is specified to be a first-order

Thus, the
can be slowly varying relative to the local

filtering of a second Gaussian white noise process.
amplitude process S
process R.

The state equation for the nonlinear dynamic system is

In this form the state equation consists of the array fi
tions of the system response and the array g5

of func-
of constants which
The excitation process is
the product of two Gaussian processes, the R

multiply the excitation random process.

component being a
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white noise process. The differential equation for the amplitude

component process is

S = -aqs +\[2a;b &5(t) (A17)

These equations are combined to give the state equation for the
composite dynamic system, the state vector consisting of the
response variables of the dynamic system and the amplitude process.
The coefficients ag and a4 are frequency scale constants which
~are used to identify the relative dynamic properties of the non-
linear system and the amplitude process in the subsequent discus-
sion. The random excitation of the composite system consists of
the two independent Gaussian white noise processes of equa-

tions (A16) and (A17), which have zero mean values and autocorre-

lations equal to Dirac delta functions

EBﬂtq = 0 )
s(ty = tp) (j = k)? (A18)
Ele:(t,) g, (ts)]| =
[J 17 & 2] . . ¢kL

With this definition of the autocorrelation function of the white
noise processes and with the differential equation of the ampli-
tude process (eq. (A17)), the resulting amplitude process has the
probability density function of equation (A11).

The derivate moments (eq. (A15)) are obtained from the state
equation of the composite system. The derivate moments are those
of a nonlinear dynamic system under white noise excitation except
for those moments which correspond to the terms with the product
of the amplitude and the first white noise process of equa-
tion (A16). Since these two processes are independent, the ampli-
tude variable appears only as an amplitude factor in the derivate
moments associated with this excitation term. The associated
higher order derivate moments are zero as a result of both the
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independence property and the Gaussian property of the white noise
process. The resulting derivate moments are combined with equa-
tion (A14) to form the Fokker-Planck equation of the composite
dynamic system of equations (A16) and (A17)

4R - 5 —g-—f‘-(-) +-ls‘2- —-=-—p——+a---—(s)+b2——l"l
at ani[ly p:l > 5 Bify 9y Y ; 1 P 552

(A19)

Again, repeated indices imply a summation. The first term on the
right-hand side results from the response term of the original
dynamic system of equation (A16). The second term results from
the excitation of the original dynamic system by the product pro-
cess. This term couples the amplitude and the dynamic system
variables in the Fokker-Planck equation. The last two terms give
the Gaussian form of the amplitude process as a first-order fil-
tering of white noise. The time derivative term on the left-
hand side accounts for the nonstationarity of the system response.
This term is droppped in the subsequent development which consid-
ers only the stationary case.

The Fokker-Planck equation gives the joint probability den-
sity function of the dynamic system variables and the amplitude pro-
cess S. The equation is replaced by the corresponding equation
for the conditional probability density function with the ampli-
tude process as the conditional wvariable

p(¥,s) = p,(¥ls) p(s) (A20)

By using the probability density function of the amplitude process
(eq. (A11)) together with equation (A19), the Fokker~Planck equa-
tion for the conditional density function is

32

;%;[fi(?) pc]

gng ~Pe . (p2 2P _ 5 2P (A21)
3y ayJ
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where

€ =

ag
ap

The solution of this equation can be developed in a perturba-
tion form which is related to the quasi-steady approximation. It
is assumed that the amplitude process is slowly varying relative
to the system dynamics; that is, the ratio of the associated fre-
quency scale constants (a1 divided by ao) is much less than one.
The conditional probability density function is accordingly writ-
ten in series form with this ratio as a perturbation parameter

@

Po(¥is) = :E: el ¢, (¥,s) (A22)
n=0

By combining the series expression with the Fokker-Planck equation
(eq. (A21)), a set of equations is generated for the functions ¢p
of the series. The equation for the first term of the series is

2
2 2p. g, —20 |
[f (§) ¢o(3)] - 2 98185 Gy gy 7O (A23)

This relation is the Fokker-Planck equation for the original
dynamic system (eq. (A16)), the quantity s being an amplitude
parameter which multiplies the excitation white noise process.
The resulting probability density function is the conditional
function of the system response, conditional on the value of the
amplitude parameter s. The preceding development is thus the
quasi-steady approximation for the analysis of the response of
dynamic systems to the amplitude modulated process (eq: (A1)).
The approximation is based upon the modulation concept that the
time variation of the amplitude process is much slower than that
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of both the R component process and all coordinates of the
dynamic system. The quasi-steady form of the Fokker-Planck
equation (eq. (A23)) is a limiting case of the exact equation
(eq. (A21)).

The development of the quasi-steady approximation in this
case depends on the relative values of the two frequency scale
constants, ap and ay. The definition of the constant ap of
the nonlinear system depends upon the specific- form of the system
under consideration. For the bilinear spring system considered in
the text, a frequency scale constant is easily defined since the
nonlinear system has two limiting linear systems. 1In this case
the frequency scale constant a; is the minimum value of the
natural frequencies of the two limiting linear systems.

The response of dynamic systems to the amplitude modulated
process can thus be analyzed by use of the quasi-steady approxima-
tion. The analysis procedure consists of two steps. First, the -
probability density function of the system response to a stationary
Gaussian process with a constant amplitude parameter is deter-
mined by the Fokker-Planck equation. This is the conditional prob-
ability denéity function of the response. Second, the random vari-
ation of the amplitude process is introduced through equation (AL).
For linear dynamic systems this procedure is relatively simple
since the dynamic response to the Gaussian conditional process is
also Gaussian. Also, the amplitude parameter appears solely as
an amplitude factor, which does not change the functional form of
the probability density of the response. For nonlinear dynamic
systems the response to the Gaussian conditional process is gen-
erally not Gaussian. The functional form of the probability
density of the response generally changes as the amplitude param-
eter varies. Thus, the response cannot be developed in general
form as it can be for linear systems.

The amplitude component is specified to be a Gaussian process
in the development of the quasi-steady approximation. This speci-
fication is required for the formulation of the exact system
response including the dynamic effects of the amplitude process
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(eq. (A17)). However, the dynamic properties of the amplitude pro-
cess are omitted once the quasi-steady approximation has been
established. The amplitude process can then be presented in a
Gaussian related form which is restricted to nonnegative values

o = |sl (A24)

This formulation for, the amplitude process is commonly used in the
aeronautical literature. The original approach (ref. 13) intro-
duced the amplitude process as a scale factor in the standard
deviation of the conditional process by use of equation (A5).
Under the quasi-steady approximation the formulations of the
amplitude modulated process in terms of the o and the s vari-
ables are equivalent. The properties of the two processes are
-related by the transformation of equation (A24). The probability

density function of the modified form of the amplitude process 1is

0 (o < 0)
p(o) = (A25)

2 2
2 1 g-92/2b (0 5 o)
m

b

The local Gaussian process (white noise in this case) and the
associated system response always occur in combination with the
amplitude parameter (either Is| or o). This relationship fol-
lows from the form of the system excitation function (eq. (A16)).
In aeronautical applications an arbitrary scale factor between
the local process and the amplitude parameter 1is established by
defining the local process to have unit variance (ref. 7). 1In
the present case this approach cannot be used since the vari-
ance of the local process is not defined. Thus, the standard
deviation factors of the response quantities are devoid of their
usual meaning: the ratio of the standard deviations of the (con-
ditional) response and excitation processes. However, the nota-
tional separation of the standard deviation of the response into
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the product of a standard deviation factor and an amplitude
parameter (eqs. (A6) and (A10), for example) is retained

in the white noise case in order to correspond to the usual
notation of the aeronautical literature.
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APPLICATION OF FOKKER-PLANCK EQUATION TO
SYMMETRIC BILINEAR SPRING SYSTEM

The application of the Fokker-Planck equation to the analysis
of the response of the dynamic system with a symmetric bilinear
spring is developed in this appendix. This system is a special
case of a general class of systems discussed in references 19 and
26.

A single-degree-of-freedom spring-mass-damper system with a
nonlinear stiffness force is considered

m¥ + Bx + £(x) = ¢ E(t) (B1)

The stiffness force relation for the symmetric bilinear spring is

—kz(x + Xo) (X < —Xb)
f(x) = k1x (—Xb £ x £ Xb) (B2)
_kz(x - Xo) (Xb < X)
where
v2 _ X1
ko
Xg = (1 - Y2)Xb

The bilinear stiffness force relation is plotted as a function.of
the displacement in figure 1. The excitation random process is
stationary Gaussian white noise with zero mean value.  The auto-
correlation function is a Dirac delta function
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E[g(t)] = 0
(B3)
E[g(t1) E(tz):l = 2D §(t, - ty)

The power spectral density function of the white noise process has
a constant value equal to the quantity D divided by =. The
white noise process is multiplied by the amplitude parameter o,
which is a constant in the present development.

The joint probability density function of the displacement
and the velocity (conditional on the value of the amplitude
parameter o) is obtained from the Fokker-Planck equation. By
using equations (A16) and (A23), the Fokker-Planck equation for
the dynamic system of equation (B1) is

2
-y & 3 2 3 _ =
v ax[p(x’v|°)] + av‘ﬂ}v + f(x)]p(x,vlo)} + Do av2[p(x,vlo)] 0

(BY4)

where

In this case the Fokker-Planck equation can be solved by the
method of separation of variables

p(x,vlo) = p(xfe) p(vlo) (B5)

This relation states that the displacement and velocity of the
system response are independent. By applying the separation of
variables, the Fokker-Planck equation gives separate equations for
the two first-order probability density functions. The solution

of the equation for the probability density function of the
displacement is
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p(xlc) = Cn expl- —B— ¥ £(%) ax (B6)
eenf 0]

For the bilinear spring (eq. (B2)), the probability density func-
tion of the displacement is

Co exp{- 12 5 Bx + xo)2 + yszxo] (x < -xp)
2hyo%o
- 1 2
p(XIO) = CO exp/ - ————E—E X (—Xb £ x £ xb)
2Ax1 o
Co exp(- ———JE—E-BX - xo)2 + YZXon] (xp < x)
2AX2 g
- (B7)

where

2
Byq D/gk

2 - L2 2
sz D/Bkz =Y AX1

The probability density function has Gaussian functional forms in
the linear regions of the stiffness force relation, with the vari-
ances and mean values for the linear systems corresponding to
those regions. The probability density is a continuous function
of the displacement as indicated by equation (B6). The unknown
constant in equation (B7) is determined by the normalization con-
dition, that is, the total probability must be equal to one

00“1 = JEFAX1o[erf n o+ g(Y,n)] (B8)
where
n = —b
J§Ax1°
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gly,n) = v eXP[}YZ - 1)n2]erfc(Yn)

The probability density function (eq. (B7)) determines all
the moments of the displacement. The mean value and all other odd
order moments are zero, a property which follows from the anti-
symmetry of the stiffness force. The relation for the variance
of the displacement is

E[X2|o] = UXCZ = sz.(cr)cr2 (B9)

v

(v2 - 1){- 2. n(y? - 1)e'“‘2 + [1 + 2(y% - 1)“2]g(7’“§

A L2 - erf\n + glyyn) ‘
(B10)

The Fokker-Planck equation also gives a differential equation

for the probability density function of the system velocity, whose
solution is

2
p(vic) = S exp |- — ¥ (B11)
\/Z-TAVO 2AV202

where

Thus the velocity is a Gaussian random variable. The probability
density of the velocity is identical to that of a corresponding
linear system under white noise excitation, in which case the

probability density function is independent of the stiffness
force.
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RESPONSE OF NONSYMMETRIC BILINEAR SPRING SYSTEM

The effects of nonsymmetry in the bilinear spring system are
discussed briefly in this appendix. The probability density func-
tion of the response of the nonsymmetric dynamic system is
obtained from the solution of the Fokker-Planck equation. The
solution for the system response is developed first for excitation
by the conditional process and then for excitation by the ampli-
tude modulated process. The main item of interest is the mean
value of the displacement which can be nonzero due to the nonsym-
metry. The differential equation of the system has the same gen-
eral form as that for the symmetric system (eq. (B1)). The
bilinear stiffness force is formed from linear regions, the two
outer regions having the same linear stiffness force coefficient.
The breakpoints between the linear regions are not symmetric in

the displacement:

—kZ(x + axq) (x < -oxy)
£(x) = |kqx (mexy £ x £ xyp) (Cc1)
—kz(x - Xo) (Xb < x)

where

The probability density function of the response to the condi-
tional process is determined by the Fokker-Planck equation. By
using the solution for a dynamic system with a general nonlinear
stiffness relation (eq. (B6)), the probability density function of
the displacement is
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50 exp /- ———JE—ElEX + axo)2 + a2Y2Xbe] (x < -axb)
2AX2 ag
p(xle) = 60 exp [- — 1 %2 (mexp £ x £ xp)
284202
x1
60 exp (- ———l———[}x - xo)2 + YZXbXO] (xp < x)
2A_ 5202
x2
. (C2)

The coefficient is determined by the normalization condition

60-1 = V% Ax1o[§rf(n) + erf(an) + g(y,n) + g(y,an)] (C3) -

The probability density function of the velocity is unchanged from
the symmetric case (eq. (B11)). The joint probability density
function of the displacement and velocity, which are independent
for the reéponse to the conditional process, is thus known. This
function can be used to determine the various moments, the exceed-
ance expression, and other response quantities.

The primary new feature in the nonsymmetric case is the exis-
tence of nonzero odd order moments of the displacement. The con-
ditional mean value is obtained from the conditional probability
density function (eq. (C2))

. VF[ng(Y,n) - ang(Y,an)]}

Elxlo] = EOAX1202(Y2 - 1){e'n2 - e~0
(Ch)
The conditional mean value of the displacement is plotted in
figure 23 in nondimensional form as a function of the amplitude
parameter o for one set of the parameters of the nonsymmetric
bilinear stiffness force. The conditional mean value shows the

properties of the two limiting linear systems. The conditional
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mean value approaches zero in the limits either of small values of
amplitude parameter o¢ or of large values of the breakpoints of
the bilinear stiffness curve. In these cases the stiffness force
is dominated by the inner linear region. In the opposite limits
the stiffness force is dominated by the outer regions of the
stiffness force relation. For large values of the amplitude param-
eter the conditional mean value approaches a limiting value, which
is obtained from equation (Ci4),

X = 1lim E[xl|o] = %(1-— Yo (1 - @)Xy (C5)

m,= gro

The response of the nonsymmetric dynamic system to excitation
by the amplitude modulated process is developed by introducing the
random variation of the amplitude parameter. The relation for the
mean value of the response to the amplitude modulated process is

w

E[x] =f Elxle] p(o) do (C6)
0

The required integration over the amplitude parameter o¢ 1is
intractable and is done numerically. The mean value of the dis-
placement is plotted in figure 24 in nondimensional form as a func-
tion of the standard deviation of the amplitude modulated process.
The parameters of the nonsymmetric bilinear stiffness force rela-
tion are the same as those used in figure 23. The mean value
shows the same qualitative behavior as in the case of the condi-
tional process. In the limit either of small values of the stan-
dard deviation of the amplitude process or of large values of the
stiffness breakpoints, the mean value approaches zero. In the
opposite limits the mean value approaches the same limiting value
as in the case of the conditional process (eq. (CS)).
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LINEAR EQUATIONS OF MOTION FOR THE AIRCRAFT SYSTEM

The linear equations of motion for the aircraft considered
are outlined in this appendix. The equations of motion and the
aircraft system are described in detail in reference 21. The
aircraft is representative of small corporate jet transports,

Only the whole-body longitudinal motions of the aircraft are
considered. The augmentation system is an autopilot which con-
trols the deflections of the elevator on the horizontal tail.

The equations of motion are basically the c}assical equations
of the dynamic response of a rigid aircraft (ref. 22). The
equations are written in the stability axes system with the origin
at the airplane mass center. Four coordinates are used: per-
turbations in nondimensional forward speed, angle of attack,
pitch angle, and elevator deflection angle. The equations of

motion are written in the form of their Laplace transformation as

[M1{q} = -a, (£} (D1)
where
[on 8 o _
2nr 2uo s Cxu —CXu CL,O 0
2C -cC on =& s -cCc, -cC,. -8 su(s) -2w =& s -¢c, S g -C
M = L,0 Zy ! 2u, Za zé Zu, ug 2q 2u, s
-C -C - £ s2(s) i &2 s -¢c, S -C
my, Mg mg > B l&uoz my 2ug mg
0 1 K Kg -1
0 stch + 1( 6 * OS)
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4
a
qQ = Ve
s |
and
f
Cy, A
oo * (Czg ™ C2 )—5— s2(s)
f =< .a * q uo >
C + (C.. -C_\=2 sa(s)
Mo (m“ mQ) Yo
0 J

The classical equations are modified to include a pure con-
vective time lag of the wing downwash and of the turbulence veloc-
ity between the wing and the horizontal tail. This modification
is achieved by multiplying the angle-of-attack rate and the turbu-

lence rate terms by the function

L(s) = _{EH - e"TS) (D2)

The quantity <« is the distance between the aircraft center of
mass and the aerodynamic center of the tail divided by the forward
speed of the aircraft. For this application it is assumed that
the terms associated with the angle-of-attack rate a and the
pitch rate q in the equations of motion originate from only the
tail forces. Except for the transport time lag between the wing
and tail, the unsteady aerodynamic effects are represented in
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quasi-steady form. Except for the notation given in equation (D2),
the notation of equation (D1) follows that of reference 21.

The autopilot control relation consists of first-order ser-
vosystem dynamics and two feedback gains, one for the pitech Ke
and the other for the pitch rate Ké- Therefore,

1 .
§ = ———— (K, + K;s)oe (D3)
Stch + 1 ( 8 i ) 3

The present study considers only one set of the parameters of the
control law. The servosystem characteristic time tch has a value
of 0.037 second. The pitch gain Kz has a value of 1.0; the pitch-
rate gain Ky has a value of 0.054. This value of pitch-rate

gain corresponds to the value of 10.0 quoted in reference 21,

where a time scale factor (mean aerodynamic chord of the wing
divided by twice the aircraft forward speed) was omitted.

The airplane equations of motion are solved for the variances
of the response by frequency response methods. The stationary ran-
dom process of the vertical component of the one-dimensional turbu-
lence velocity field is represented by the von Karman form of the
power spectral density function (ref. 7) rather than the Dryden
form used in reference 21. A value of 762 m (2500 ft) is used for
the scale of turbulence. The standard deviation factor of the
excitation process has unit variance. The power spectral density
functions of the response are determined from the product of the
spectral function of the vertical component of the turbulence
velocity and the square of the modulus of the frequency response
functions which are obtained from equation (D1). The variances of
the response are obtained by integrating the power spectral den-
sity functions over an appropriate range of frequency values. The
flight condition considered has an altitude of 6100 m (20 000 ft)
and a Mach number of 0.75. The mass data and the stability deriva-
tives for this condition (condition IV) are listed in reference 21.

The equations of motion of the aircraft can be presented in a
simpler, approximate form which is used to study the effects of
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the turbulence and the control system upon the pitching motion.
The approximate relation is the same as equation (D1) except that
the forward-speed coordinate and the convective time lag between
the wing and tail are omitted. The resulting equation for the

pitch coordinate is

(b232 + bqys + bo>e - -(a1 + Z—Q>ag - <d1 + S-Q>s (DY)
where

b, = iB(Zu - Cz&)(t*)z

by = -[chza + 24 (Cma + cmq> + CpyCp = CquZ&Jt*

*
d; = [-cm (2u CZ&> Czacma]t
dp = ( Mg “Zg Zg ma>
t* - &
2uO

In this form the excitation function consists of the aerodynamic
forces due to both the turbulence field and the elevator deflec-
tion. The coefficients associated with the elevator deflection
(that is, dO and d1) have positive values for the flight con-
dition considered in the present study. The constants ap and
aj for the turbulence field are similar to the constants dg
and d4 for the elevator deflection.
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